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Baker Laboratory, Cornell University, Ithaca, New York 14853, USA 

Received 19 February 1981 

Abstract. We derive accurate compact expressions for the high-temperature specific heats 
of classical (s=Ca, 3-vector) spin systems on the FCC, BCC and SC lattices for pure 
Heisenberg, XY and Ising-like couplings, respectively. The analysis of the appropriate 
series expansions demonstrates the utility of inhomogeneous differential approximants and 
supports the estimate aH = -0.21 0.04. 

1. Introduction 

At a bicritical point (see e.g. Fisher 1974), such as is exhibited by the antiferromagnet 
MnFz in a magnetic field, two critical lines of distinct character, typically Ising-like (or 
nil = 1-component) and XY-like ( n ,  = 2-component), meet: the bicritical point itself is 
then characterised by critical exponents of Heisenberg (or n = rill + n, = 3) type. To 
describe the subtle changes in critical behaviour from Ising-like to Heisenberg-like to 
XY-like observed in the vicinity of a bicritical point one must determine the crossover 
scaling functions. These scaling functions are expected, on renormalisation group 
grounds (Kosterlitz et a1 1976), to be universal: hence they may be studied conveniently 
in the context of a classical ( S  = a) spin model with three-component spins, s = 
(sx, sy, s’), Is/ = 1, on a regular lattice coupled via the anisotropic nearest-neighbour 
interaction 

(1.1) 
(Pfeuty et a1 1974). When J ,  = Jll= J this yields pure Heisenberg coupling; J ,  = 0, Jli = J 
corresponds to the pure Ising-like case (but note that the components s: and s: still 
enter in determining statistical weights); JL = J, 41 = 0 describes pure XY-like coupling. 

High-temperature series expansions, in powers of x = J , / k B T  and y = Jll/kBT, for 
the models described by (1.1) may be used as a basis for studying the bicritical region, 
g a (Jll -J , )  small. An initial study utilised well-established single-variable methods of 
series analysis (ratio extrapolation and Pad6 approximants) to examine the ordering 
susceptibilities, xll(T, g) and xI(T, g) (Pfeuty et a1 1974), and the specific heats, C(T,  g), 
and non-ordering susceptibilities, ill(T, g)  and gI( T, g) (Gerber and Fisher 1976). 
However, single-variable techniques cannot be used directly or reliably in the immedi- 
ate bicritical region, which is what is really needed to find the crossover scaling 
functions, because of the discontinuous changes in critical exponents occurring at the 
bicritical point. These difficulties can be overcome by using the recently devised partial 
differential approximant techniques (Fisher 1977, Fisher and Kerr 1977) to analyse 

AX,, = -J-(s:s,” + s : s ~ )  -J~~s:s: 
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directly the double series in x and y together. This two-variable approach has, in 
particular, been successful in estimating precisely the ratio, Q, which determines the 
relative rapidity with which the two critical lines approach the bicritical point (Fisher 
et al 1980). 

Now the calculation of crossover scaling functions via partial differential approxi- 
mants involves integrating the coupled ordinary differential equations for the ‘tra- 
jectories’ using appropriate initial or boundary values specified on particular loci in the 
(x, y )  (or (T,  g ) )  plane. Convenient choices are the axes x = 0 and y = 0 corresponding 
to the pure XY-like and pure Ising-like models (Fisher and Kerr 1977, Fisher et a1 
1980). Thus to determine the crossover behaviour of the specific heat which, unlike the 
ordering susceptibilities xi1 and xL, is directly susceptible to thermodynamic measure- 
ments in real antiferromagnets, one needs easily computable approximants for the 
specific heats of the pure Ising-like and pure XY-like models: the desired approximants 
should be accurate in the critical region and, in particular, must embody the correct type 
of singular behaviour. Corresponding knowledge of the pure Heisenberg models serves 
to crosscheck the two-variable calculations. 

Accordingly in this note we address the problem of producing compact, reliable 
approximate formulae for the specific heats of the pure Heisenberg ( n  = 3), XY-like 
( n  = 2) and Ising-like ( n  = 1) spin-co models on the three standard cubic lattices, FCC, 

BCC and sc. Since the specific heat exponents aI ,  a X y  and  ay^ (for n = 1 , 2 , 3 )  are known 
to be small, and since the last two are negative, normal Pad6 approximant techniques 
are unsuited to the task. Instead we have utilised inhomogeneous differential approxi- 
rnants as explored recently by Fisher and Au-Yang (1979) and Hunter and Baker 
(1979). (See also Guttmann and Joyce (1972) and Rehr et a1 (1980).) We have, of 
course, taken advantage of the longest series currently available: in particular for the 
Heisenberg model we have used the 13th-order series for the FCC lattice recently 
published by English et a1 (1979). It transpires, however, that the inhomogeneous 
approximants are sufficiently powerful that, in combination with the susceptibility 
series, they already yield comparable results at 11th and 12th order. In particular we 
conclude, for spin n ~ ,  that the specific heat is described by CYH= -0.21*4 (all 
uncertainties quoted, here and below, referring to the last decimal place), which is 
significantly lower than the original estimate of Ferer et a1 (1971) of (YH = -0.14 * 6 ,  but 
not inconsistent with the ratio analysis of English et a1 (although we do not feel 
especially sensitive to their expressed need for longer susceptibility series). Our 
estimate for aYtI is also considerably lower than that obtained by renormalised field 
theory perturbation techniques applied in three dimensions which yield QH = 
-0.115 * 15 (Baker eta1 1978; see also Le Guillou and Zinn-Justin 1977). (However, 
the estimates for the susceptibility exponents, y, are in satisfactory agreement.) It is 
unclear whether this discrepancy in a ,  like similar ones seen in comparisons with spin-; 
Ising model series, is to be explained as due simply to the inadequate length of the 
present 13th-order series and the neglect of specific allowance for confluent corrections 
to the critical singularities (see further below), or as indicating that the fixed-length spin 
models belong to a distinct universality class, as argued by Baker and Kincaid (1979) for 
the standard Ising model. In either situation we believe that the explicit approximants 
presented below will provide very good numerical representations of the specific heats 
of the classical spin models close in to the critical point even if the analytic forms are not 
precisely correct. Certeinly our forms should be more than adequate for the purpose of 
obtaining good estimates for the crossover scaling function for the bicritical specific 
heat. 
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2. Inhomogeneous differential approximants 

Given a function f defined via its power series as 

i = O  

the inhomogeneous differential approximant (or ' U/PQ approximant') F J I L ; M ( ~ )  = 
[ J / L ;  M ] f  is defined as the solution of the differential equation 

UJ ( x )  + PL(X ) F ( x )  = QM (X)(dF/b) (2 .2 )  

satisfying the initial condition F(0)  = f (0) = f o ,  where the polynomial coefficients 
U J ( x )  = Z;=, uixi, PL(x) with PL(0) = p O  = 1 ,  and Q M ( x )  are chosen so that the formal 
power series expansion of the solution function, F ( x ) ,  reproduces the known series for 
f ( x )  at least to order x N ,  where N = J + L  +M+2 (Fisher and Au-Yang 1979). In the 
case J =  0, meaning the coefficient UJ(x)  is absent or identically zero, the inhomo- 
geneous approximant reduces to an ordinary Dlog Pad6 approximant (e.g. Baker 
1975), and one should set J = - 1  in the expression for N. 

Inhomogeneous differential approximants are particularly useful in representing 
functions with critical behaviour, as x + x i ,  resembling 

f ( x )  =A(x) [ l - (x /xc ) l -"  + B ( x ) ,  (2.3) 

where A(x)  and B ( x )  are smooth in the critical region and where the exponent a is 
relatively small (or negative) or where the 'background', B ( x ) ,  is relatively large near x, .  
Estimates for the critical point x c  are then obtained by finding the appropriate root of 
the equation 

Q M ( x C )  = 0.  (2.4) 

a = -PL(xJ/QLM(xJ, 

If a prime denotes differentiation, one also has the estimates 

Bc = B ( x c )  = - U, (XC)/PL(XC) (2 .5 )  

and similarly for B'(x,). With the amplitude function 

A ( x ) = A , [ l + a l ( x - x c ) + .  . .], (2 .6)  
one further has 

a1 = [PL(xC) + ~ ~ Q L ( X , ) I / Q L ( X ~ ) ,  (2.7) 

while the leading amplitude may, in the present cases of small a, be calculated 
conveniently by integrating (2 .2 ) ,  taking appropriate precautions as to accuracy, and 
using 

A , =  lim- [ l - ( x / x c ) ] ~ [ F ( x ) - B , ] .  (2 .8 )  
x - x c  

(See also Fisher and Au-Yang (1979) and Hunter and Baker (1979).) 
Since the equations determining UJ, PL and QM are merely linear and algebraic, it is 

straightforward to bias the approximants by imposing specified values of (i) x o  or (ii) x ,  
and a, or (iii) x c  and B,, or (iv) x, ,  a and B,. As in standard Pad6 approximant 
techniques, this may be useful if xc  is known more reliably from, say, strongly divergent 
functions like the susceptibility. 
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The approximants [ J / L ;  MI do not explicitly allow for confluent critical singularities 
of the sort suggested by current renormalisation group theory (Wegner 1972), which 
would insert a term as (xc  - x)O with 13 = 0.5 before the a l  term in the amplitude factor in 
(2.6). (But see Rehr eta1 (1980) for more general methods.) While there is little reason 
to doubt the presence of such terms, they will be strongly dominated by the effects of the 
background term, B ( x ) ,  in the case of the specific heat series where a SO.15. Con- 
versely for the strongly divergent susceptibility series, on which we rely for the optimal 
estimates of xc ,  the confluent singularities are more important than the background. 
However, it transpires that, to within the precision that concerns us here, allowance for 
such confluent singularities in the susceptibility has an insignificant effect on the 
estimates for x c .  To be explicit, Rogiers et a1 (1979) have studied the XY model on the 
FCC lattice and, allowing for a confluent singularity, found x c  = 0.29932 if y = 1.333 is 
assumed, but xc=0.29922 if y = 1.316: on the other hand a nai've Dlog (or inhomo- 
geneous differential) approximant analysis indicates xc = 0.2993 * 1 and y = 
1.315 f 20. It may also be remarked here that the nai've estimates for y for the classical 
spin models with n = 1, 2 and 3 are in rather satisfactory agreement with the field 
theoretic perturbation estimates for d = 3 (Baker et a1 1978, Le Guillou and Zinn- 
Justin 1977). 

3. Heisenberg model on the face-centred cubic lattice 

We discuss first some details of the analysis of the specific heat series for the FCC lattice 
with pure Heisenberg coupliflg. This case is interesting because the value of the 
exponent is still not well established. Furthermore, for the FCC lattice terms to 13th 
order are now available (English et a1 1979) and, unlike the BCC and sc series, the 
coefficients of all powers are non-vanishing (except those of x o  and x which are zero for 
all lattices). Finally, this case will amply illustrate the nature and power of the methods 
of analysis as they apply equally to the other lattices and types of coupling. 

Figure 1 shows a correlation plot of aH estimates versus the corresponding x c  
estimates for a range of [ J / L ;  MI approximants with J = 1 to 5 using coefficients up to 
orders N = 9 to 13. Note that we always count the series as starting with the constant 
term, namely 

m 

C ( T ) / k B =  1 C n X n = O + O X + X 2 + C 3 x 3 +  . . .  ) 
n=O 

where the normalisation of C(T) is chosen to make the coefficient of x 2  equal to unity. 
Already at 11th order (full symbols in the figure) a well-defined linear correlation is 
established between the estimates: this can be represented by 

~ ~ ~ ~ - 0 . 2 0 0 + 6 5 ( ~ , - 0 . 3 1 5 0 ) * 0 . 0 4 0 .  (3.2) 

Inclusion of the 12th-order terms merely reinforces this correlation through to x c S  
0.3150; the 13th-order terms add essentially nothing new. This same correlation is also 
reproduced in biased approximants in which the value of xc  is imposed. Specifically, 
with xc set equal to 0.31470 (the central estimate of Ritchie and Fisher (1972)), 
approximants with J = 1 and 2 yield CYH = -0.18 to -0.25 for N = 10, -0.19 to -0.24 
for N = 11, -0.20 to -0.24 for N = 12, and -0.22 to -0.25 for N = 13: the values are 
consistent with (3.2) which yields LYH = -0.22 4. 
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Figure 1. Unbiased estimates of the specific heat exponent, cy, for the FCC classical 
Heisenberg model versus corresponding estimates for the critical point, from inhomo- 
geneous differential approximants using the series coefficients up to the orders N indicated 
by the symbols. 

It is clear from these results that it is more important to have a reliable independent 
estimate for xc than to have the last term or two in the specific heat series. Ritchie and 
Fisher (1972) based their estimate of xc = 0.3147 f 1 mainly on the Dlog Pad6 table for 
the susceptibility series to 10th order. Bowers and Woolf (1969), using only the 
8th-order series, had earlier claimed xc = 0.314450 * 7, but their apparent precision is 
illusory. On the other hand, Ferer et a1 (1971), using the 10th-order series and ratio and 
related extrapolation techniques, concluded x, = 0.3 1493 i. 2, which is essentially 
consistent with the Ritchie-Fisher estimate. English et a1 (1979), on the basis of the 
same data, have recently suggested that x,might be as large as 0.3157; but this does not 
seem plausible to us even, in the light of the comments in the previous section, if 
allowance is made for confluent singularities. However, to supplement the Ritchie- 
Fisher Dlog Pad6 analysis (corresponding to UJ 0 or J = 0) we have computed the 
inhomogeneous approximant tables for J = 0, 1 , 2  and 3. For J = 1 and 2 and N = 9 and 
10 the tables seem quite well converged: over all we are led to the estimate 

xc=  0.31480k 15, (3.3) 
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which encompasses the central estimates of both Ferer et a1 (1971) and Ritchie and 
Fisher (1972). 

If (3.3) is accepted and we examine the corresponding sets of biased estimates for a, 
which confirm (3.2) and show essentially no variation for N = 10,11, 12 and 13, we are 
led to conclude that the Heisenberg specific heat exponent for S = CO is 

(YH = -0.21 *4 (3.4) 

(see the ‘box’ in figure 1). It is interesting that this agrees closely with the long-standing 
estimate of Baker et a1 (1967) of aH = -0.20 * 4 for the spin-f Heisenberg model. 

Incidentally, the specific results reported by English et a1 (1979) are also consistent 
with the correlation (3.2): thus they concluded aH = -0.204 if the Ferer et a1 estimate 
for x, were accepted. Ferer et a1 themselves, using graphical methods and the shorter 
series, had concluded CYH = -0.14 * 6. Gerber and Fisher (1976; see also Ritchie and 
Fisher 1972) adopted ( ~ ~ = - 0 . 1 0 ,  in the upper part of this range, for their study of 
bicriticality. 

In our subsequent calculations of approximants for the specific heat we employ the 
two explicit valLzs (i) x, -1 0.31470 (with (YH = -0.22) and (ii) x ,  = 0.31485 (with 
cyH-- -0.21). Both these are within the range (3.3): the former, Ritchie-Fisher value is 
adopted for consistency with previous and current calculations of bicritical behaviour 
(Fisher and Kerr 1977, Fisher et a1 1980, etc); the latter is closer to the central value of 
Ferer et al. 

The next step is the estimation of the background term, B, = B(x,) ,  which, since aH 
is negative, is here equal to the critical point value, C,/kB,  of the specific heat itself. To 
this end it is appropriate to use biased approximants with the value of x, imposed. The 
assignment (ii), namely x ,  = 0.31485, yields estimates of aH strongly concentrated in 
the interval (3.4), but with a few outlyers reaching to around -0.07 and -0.33. 
However, the various estimates for B, obey the correlation relation 

B,(a) 2: -0.2521&’+ 0.7604 - 0.280a f 0.02. (3.5) 

The central estimate,  ay^ = -0.21, thence yields B, = C,/kB = 2.02* 2, which is adop- 
ted for subsequent fitting. Likewise for the assignment (i), x ,  = 0.31470, the value 
(YH = -0.22 yields B, = C,/kB = 1.945* 2. However, the assumption (YH = -0.10, 
adopted by Gerber and Fisher (1976), yields B,  = 3.31 *4, which actually compares 
quite satisfactorily with the Gerber-Fisher estimate of 3.37 f 7 based on the shorter, 
11 th-order series. 

As is evidently to be anticipated, there are also strong correlations between the 
estimated values of B, and amplitude estimates A,. For both assignments (i) and (ii) one 
finds SA,/SB, = 2.7, the correlation being quite linear over the relevant range of 1% or 
so in B,. The central values for B, then yield (i) A,= -2.951 * 1 and (ii) A,  = 
-3.003 * 1, where the uncertainties quoted take no account of the original uncertainties 
in B,. Quite consistent but even more precise estimates for A,  are obtained from 
approximants in which the value of B, is also specified. Notice that the negative sign for 
A,  merely reflects the negative sign of cyH. We also find that the Gerber-Fisher estimate 
of B, -- 3.37 yields A ,  = -3.89, which agrees well with their corresponding estimate. 
The central estimates for cy, B, and A ,  are collected in table 1. 

It is instructive to compare these inhomogeneous differential amplitude estimates 
with the amplitudes that would be estimated by ratio techniques (see e.g. Fisher 1967). 
If cn are the expansion coefficients to order n, and x, and cy are good critical point and 
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Table 1. Estimates for critical points, exponents, amplitudes and backgrounds of the 
classical ( S  = C O )  spin models with pure couplings of different symmetry. The uncertainties 
to be attached to,these estimates are discussed in the text. 

Symmetry Lattice x ,  = J /  kBTc a 4 BC 

Heisenberg FCC (i) 0.31470 -0.22 -2.951 1.945 
( n  = 3) (ii) 0.31485 -0.21 -3.003 2.023 

BCC 0.48635 -0.22 -4.29 2.88 
sc 0.69160 -0.22 -4.910 3.615 

XY FCC 0.29930 -0.02 -20.8736 20.16 
( n  = 2 )  BCC 0.45977 -31.4033 30.375 

sc 0.64430 -41.620 40.5 

k ing  FCC 0.28.503 0.125 2.6333 -3.30 
( n  = 1) BCC 0.43510 4.214 -5.31 

sc 0.60090 6.027 -7.35 

exponent estimates, one may compute A ,  by extrapolating the sequencp 

to n = CO as illustrated in figure 2. Evidently the plot for the assignment x ,  = 0.31470 
and aH = -0.22 is fairly linear in l / n  and would be extrapolated to a value rather close 
to the differential approximant estimate marked by an arrow labelled [ J / L ;  MI.  The 
assignment cr = -0.10 (of Gerber and Fisher) yields a distinctly curved plot which goes 
through a minimum where A ,  = -3.84, but a na'ive extrapolation would agree within 2 
or 3% with the differential approximant estimate A ,  = -3.89: of course, the curvature 
and minimum suggest strongly that (YH 

Finally, values of the specific heat itself can be found by integrating the defining 
equation for optimal biased approximants with, say, x,, a and B, specified. Explicitly in 
case (i) the [3/5; 61, [3/3; 81 and [3/4; 71 approximants, among others, prove quite 
satisfactory. However, such a representation is not very convenient for subsequent 
applications in which a simple, rapid evaluation is desirable. Accordingly, we approx- 
imate the specific heats by the expression 

C(  T ) / k B  =A,[ (  1 - 3)-" - 1 - a i ]  + A ; [ (  1 - 3 ) l - O  - 1 - (a - l)3] 

-0.10 is not an optimal estimate. 

N + 1 b,i" + 6iN+l(1 - z p ,  
n = 2  

(3.7) 

in which i = x / x ,  = T,/T, while A ,  is taken from (2.8) for an optimal approximant of 
highest order N with specified x,, cr and B,, and A: = -alx,Ac where al  is given by 
(2.7). The polynomial coefficients are defined by 

b, = C,X: - ( - ) n  [ A ,  +A:( ;")I 1 
(3.8) 

in which the c, are the expansion coefficients for the specific heat (see (3.1)). The 
remainder amplitude, b; is taken as a reasonable extrapolant for bN+l, while F is chosen 
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Figure 2. Estimation of the critical point amplitude, A,, by extrapolation versus l / n  using 
(3.6) with specified x ,  and a, in comparison with the corresponding inhomogeneous 
differential approximant results (labelled [J /L;  MI) .  

to give the appropriate background value through 

Clearly, the overall approximant (3 .7)  embodies all the known exact expansion 
coefficients as well as the preferred estimates for x,, a and E,. Furthermore, it is found 
that; within the errors of the numerical integration, an expression such as (3.7) will 
agree precisely through the whole range of x G x c ,  not only with a particular, good 
differential approximant, but also with all other approximants yielding comparable 
values of A,. (It may be remarked that inclusion of the term with coefficient Ah is 
essential for this agreement.) For the central values of xc, a and B, given in table 1, the 
parameters N, A,, A:, Land Fare listed in table 2, while the coefficients b, are collected 
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Table 2. Parameters for evaluating the specific heat approximant (3.7) for optimal 
inhomogeneous differential approximants [J /L;  M ]  with values of x ,  and (Y listed in table 1. 

Symmetry Lattice N [J /L ;  MI A,  ALIA, 6 P 

Heisenberg FCC (i) 13 [3/3; 81 -2.95075 1.25848 0.00034 0.850876 
( n  =3)  (ii) 13 [3/4;7] -3.00303 1.28638 0.00038 0.847838 

BCC 10 [3/5;4] -4.29102 1.18590 0.00525 0.386504 
sc 10 [3/6;3] -4.91233 0.547764 0.00400 0.409802 

XY FCC 11 [1/4; 71 -20.8734 0.863705 0.000045 0.879796 
(n =2)  BCC 12 [3/5; 61 -31.4033 0.717188 0.00027 0.732539 

sc 12 [2/4; 81 -41.6204 0.524960 0.00150 0.729970 

Ising FCC 9 [1/4;61 2.63339 1.28483 0.00015 0.888881 
(n = 1) BCC 10 [2/3;7] 4.21182 1.90733 0.006075 0.720188 

sc 10 [1/6;5] 6.02739 1.28946 0.00540 0.781661 

in table 3. The precision is 1 in lo4 or better or, more generally, a fraction of 6, The 
corresponding plot of the specific heat is presented in figure 3 which, for comparison, 
includes also the specific heats for pure XY and pure Ising coupling on the FCC lattice. 

4. XY and Ising models 

Our analysis of the pure XY and Ising limits on the FCC lattice proceeds in a completely 
parallel manner. The series for the XY model on the FCC lattice have been given to 
order 11 by Ferer et a1 (197.3), and for the Ising case to order 10 by Gerber (1975). The 
estimates adopted for x,, on the basis of analysis of the susceptibility series, are listed in 
table 1: they agree or are quite consistent with other estimates in the literature (Moore 
et a1 1974, Pfeuty et a1 1974, Gerber and Fisher 1976). The XY estimate is of 
comparable precision to that for the Heisenberg case; analyses of the Ising series 
suggest somewhat higher precision. Plots of (Y versus x, for unbiased approximants 
again reveal strong correlation and, on accepting the x, estimates, yield the conclusions 

ffxy = -0.02 i 3, C Y I =  0.125 1 2 5 .  (4.1) 

These add nothing to results already in the literature (Ferer et a1 1973) and are 
consistent with estimates for the spin-; models (Betts and Lothian 1973, Sykes et a1 
1972), and, owing to the comparatively low precision, cannot be distinguished from the 
field theoretic estimates for three dimensions (Baker et a1 1978, Le Guillou and 
Zinn-Justin 1977). 

The correlation between B,  and CY for approximants with the value of x, specified is 
strong and, for the XY case, similar to (3.5). Accepting the central estimates for cyxy 

and cyI yields B, = 20.2 f 3 and -3.30 f 10, respectively, but it must be noted that, since 
the correlation yields B,=-0.41/~~, the value B,=C,/kB for the XY model is very 
sensitive to the precise assignment of cyxy. 

Granted the values of x,, CY and B,, the critical point amplitudes A, are determined 
(see table 1) to within a precision of about 3 parts in lo4 ;  however, the correlation 
coefficients, SA,/SB,, are -1.10 and -0.060 for the XY and Ising cases, respectively. 
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Figure 3. Variation of the specific heats of the classical Heisenberg, XY and Isingmodels on 
the FCC lattice above T, with kBT/J .  Note that the specific heats are normalised so that 
c ( T ) / / c B - ( J / ~ B T ) ~  as T + W .  

Lastly, the specific heats may be fitted to the form (3.7). Appropriate parameters, 
consistent with the data in table 1, are listed in tables 2 and 3, and the corresponding 
plots are presented in figure 3. 

5. Other lattices 

The specific heat series for the BCC and sc lattices may be obtained to 10th order from 
the work of Gerber (1975) for all anisotropies; for the pure Heisenberg model they are 
also given by Rushbrooke eta1 (1974). For the XY case Ferer et a1 (1973) give series to 
order 12. Since the lattices are loose packed, the specific heats are all even functions of 
x and hence alternate coefficients vanish identically. For this reason it is not worthwhile 
attempting independent estimates for aH, c y x y  or aI. Instead, as indicated in table 1, we 
adopt the estimates derived for the FCC lattice. As regards the critical points, x , ,  the 
values adopted (see table 1) are taken from Ritchie and Fisher (1972) for the 
Heisenberg model, from Pfeuty et a1 (1974) and Ferer et a1 (1973) for the XY case, and 
from our own analyses for the pure Ising-like limit. 

In order to estimate the critical point background, B,, and study its correlation with 
the amplitude, A,, we have computed a range of differential approximants, with 
specified x ,  and cy ,  but using the specific heat series in powers of x with zero coefficients 
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specified. The resulting approximants do not, of course, preserve exactly the true 
symmetry x e - x :  however, many more approximants are thence available for inspec- 
tion and, in fact, the values for x < 0, although not utilised, turn out to mirror the values 
for x > 0 quite accurately. The values for B, and A, thus estimated are collected in table 
1: for the Heisenberg, XY and Ising cases the precision of the B, estimates is roughly 
$-1 ' /o ,  2% and 2-3%, respectively. The corresponding correlation coefficients, 
GA,/SB,, are likewise -2.65, -1.09 and -0.608 for the BCC lattice, and -4.00, -1.075 
and -0.620 for the sc lattice. 

Finally, it is desirable to have easily computable approximants which respect the 
loose-packed symmetry in x.  Accordingly, in place of (3.7), we summarise our findings 
for the BCC and sc lattices by fitting to the expiession 

(5.1) 

where P = x / x c  = T,/T and A: = - (a l xc+&)Ac ,  while A, and a1 are defined as before. 
The polynomial coefficients are now given by 

bzm =c2,,,x~I" - ( - )2m2"[A,(-a)  m +$A:( ' - " ) I ,  m 

while 6 is a reasonable extrapolant for bN+2 and 2 is chosen to satisfy 

(5 .3)  

As previously, the approxiinant (5.1) will reproduce all the known specific heat 
coefficients and will embody precisely the preferred estimates for x,, cy and B,. The 
required parameters, N, A,, Ah, 6 and 2, are presented in table 2 ,  while the coefficients 
b2m are in table 4. We find, however, that (5.1) is not quite so successful in matching the 
differential approximant predictions for the BCC and sc lattices as is (3.7) for the FCC 

lattice. Nevertheless, the maximum deviations, which occur around T/T ,  = 1.10, 
amount to only a few parts in lo4  and are less than 1 in lo3 even in the worst case. 
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